FLUORINE: OXIDIZER PAR EXCELLENCE

Neil Bartlett

Department of Chemistry, University of California, Berkeley, CA 94720 and Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720 (U.S.A.)

This is a largely historical review on the employment of fluorides and fluor/ne to bring about unusual oxidations. It is based on the perspective of Bartlett and his coworkers. The discovery of 0_2^+ PtF₆ led to the realization that PtF₆ is an oxidizer of extraordinary power. PtF₆ was used in the first oxidation of xenon. Study of a similar interaction between RuF6 and Xe at The Argonne-National Laboratory led to the preparation of XeF₄ (Claasen, Selig & Malm, 1962). Independently, XeF_2 was synthesized (Hoppe, 1962). Subsequently the relative ease of Xe oxidation was shown by the photochemical generation of XeF_2 in Pyrex glass (Streng & Streng, 1965). The known noble-gas compounds involve the three heaviest elements (Kr, Xe, Rn) in combination with small highly electronegative atoms. The most effective ligand for noble-gas compound formation is the F atom, followed by O atom. The N ligand (with appended SO₂F groups, Des-Marteau, 1981; Schrobiligen, 1982) is known in some Xe compounds. There is still doubt concerning the existence of a true Xe-C band. Thermochemical data show a striking direct dependence of total bond energy in the difluorides upon the ionization potential of the noble-gas atom. This and more direct charge assessment point to the bonding in these and related compounds being semi-ionic. Although ArF_2 is seen to be an unbonded ground state species, the cation ArF^4 is known to be bound (Berkowitz <u>et al.</u> 1970). Stabilization of such a cation requires that the ionization potential of the counter MF_6 must be >> 193 kcal mole⁻¹ (for which AuF_6 would be a candidate). In addition the enthalpy, $\Delta H (MF_6 \rightarrow MF_5 + F)$, should exceed 113 kcal mole⁻¹ (in this regard AuF_6 is inadequate).

The third transition series hexafluorides exhibit a steady increase in electron affinity with increasing atomic number E (kcal mole⁻¹) being: WF₃ (81), ReF₆ (~110), OsF₆ (~135), IrF₆ (~160), PtF₆ (188). The spontaneous intercalation of the last three by graphite gave the first indication that the electron affinity of the oxidizing guest species needs to exceed ~120 kcal mole⁻¹. This has been shown to be general for hexafluoroanion forming species. $C_X^+PF_6^-$ (second or higher stage) prepared from x C + PF₅ + 1/2 F₂ is reduced spontaneously by PF₃ to yield PF₅. This is consistent with $\Delta H(3/2 \text{ PF}_5^- \text{e} \rightarrow PF_6^- + 1/2 \text{ PF}_3) = -86 \text{ kcal mole}^-$.

When high charges are developed in the carbon sheets (e.g. $C_6^+MF_6^-$) extensive F⁻ transfer from anion to the positive carbon takes place. This has a dramatic impact on the electrical-conducting properties of the graphite sheets.